Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Article En | MEDLINE | ID: mdl-38431891

INTRODUCTION: Suicide is a worldwide health concern and up to date there is no good predictor of it except a previous suicide attempt. Therefore, there are increasing efforts in the understanding of which factors, genetic or environmental, are associated with suicide behaviour. OBJECTIVE: To review evidence of the effect of childhood trauma and impulsivity on suicidal behavior through a systematic review and meta-analysis. METHODS: Searches were conducted on the 12th of June 2021 in the PubMed, Scopus, and Web of Science databases. Two reviewers evaluated each record for eligibility and discussed upon disagreement, when no consensus was reached, a third reviewer was involved to make a decision. RESULTS: A total of 11,530 records were identified through the searches. After duplicates were removed, 6,595 records remained to be screened. The full text was sought for 1,561 records. Our qualitative synthesis included 22 studies, from which 9 were included in the meta-analyses. We found a significant effect of sexual abuse, physical abuse, emotional abuse and physical neglect on suicide attempts in the prisoners, and Substance Use Diorder (SUD) subgroups. Moreover, there was a significant effect of Childhood Trauma Questionnaire (CTQ) total score and emotional neglect dimension for all the subgroups. CONCLUSION: The present study has provided an overview of the state-of-the-art research on childhood trauma and impulsivity and their association with suicidal behavior and quantified their effects on suicide attempts. Hopefully this evidence will be considered in future research and harnessed for clinical gain in detection and treatment of suicide behaviour.

2.
Front Immunol ; 13: 1021211, 2022.
Article En | MEDLINE | ID: mdl-36505414

Data recently reported by our group indicate that stimulation with a pool of immunogens capable of eliciting type 2 immune responses can restore the cognitive and behavioral dysfunctions recorded after a single episode of non-severe rodent malaria caused by Plasmodium berghei ANKA. Here we explored the hypothesis that isolated immunization with one of the type 2 immune response-inducing immunogens, the human diphtheria-tetanus (dT) vaccine, may revert damages associated with malaria. To investigate this possibility, we studied the dynamics of cognitive deficits and anxiety-like phenotype following non-severe experimental malaria and evaluated the effects of immunization with both dT and of a pool of type 2 immune stimuli in reversing these impairments. Locomotor activity and long-term memory deficits were assessed through the open field test (OFT) and novel object recognition task (NORT), while the anxiety-like phenotype was assessed by OFT and light/dark task (LDT). Our results indicate that poor performance in cognitive-behavioral tests can be detected as early as the 12th day after the end of antimalarial treatment with chloroquine and may persist for up to 155 days post infection. The single immunization strategy with the human dT vaccine showed promise in reversal of long-term memory deficits in NORT, and anxiety-like behavior in OFT and LDT.


Cognition Disorders , Cognitive Dysfunction , Humans , Immunomodulation , Diphtheria-Tetanus Vaccine , Immunity , Cognition
3.
Syst Rev ; 11(1): 150, 2022 07 26.
Article En | MEDLINE | ID: mdl-35883206

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with severe social communication, interaction, and sensory processing impairments. Efforts to understand its etiology and pathophysiology are crucial for improving treatment and prevention measures. Preclinical models of ASD are essential for investigating the biological mechanisms and should present translatability potential. We aim to evaluate the consistency of the most commonly used rodent models of ASD in displaying autistic-like behavior through a systematic review and meta-analysis. METHODS: This review will focus on the most frequently used autism models, surveying studies of six genetic (Ube3a, Pten, Nlgn3, Shank3, Mecp2, and Fmr1), three chemically induced (valproic acid (VPA), lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly(I:C))), and one inbred model (BTBR T+ Itpr3tf/J mouse strain). Two independent reviewers will screen the records. Data extraction of behavioral outcomes and risk of bias evaluation will be performed. We will conduct a meta-analysis whenever at least five studies investigate the same model and behavioral outcome. We will also explore the heterogeneity and publication bias. Network meta-analyses are planned to compare different models. DISCUSSION: By shortening the gap between animal behavior and human endophenotypes or specific clinical symptoms, we expect to help researchers on which rodent models are adequate for research of specific behavioral manifestations of autism, which potentially require a combination of them depending on the research interest. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021226299 .


Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Fragile X Mental Retardation Protein , Humans , Meta-Analysis as Topic , Mice , Microfilament Proteins , Nerve Tissue Proteins , Network Meta-Analysis , Rodentia , Systematic Reviews as Topic
4.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Article En | MEDLINE | ID: mdl-33078695

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Encephalitis , Parkinson Disease , Animals , Brain/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Encephalitis/metabolism , Neuroinflammatory Diseases , Obesity/etiology , Obesity/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
5.
J Neurosci Methods ; 366: 109412, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34798213

BACKGROUND: The effects of tobacco smoke on the central nervous system are usually studied with isolated nicotine, ignoring other compounds present in cigarette smoke. The few studies that use in vivo whole-body cigarette smoke exposure are usually performed in expensive commercial apparatus. NEW METHOD: We presented a feasible, safe, and low-cost apparatus for cigarette smoke exposure in rodents. RESULTS: Rats exposed to cigarette smoke in this apparatus showed cotinine levels similar to human active smokers. Additional results showed that cigarette smoke exposure increased glutamate and aspartic acid levels and decreased leucine, isoleucine, ornithine, phenylalanine, and tryptophan levels in the cerebrospinal fluid of rats. COMPARISON WITH EXISTING METHOD(S): Our apparatus is feasible, safe, and costs 67-fold less than a commercial automatized smoking machine. Beyond the low cost, it does not require specialized knowledge for building or maintenance. CONCLUSIONS: We concluded that our low-cost apparatus is reliable and reproduces cigarette smoke use in humans.


Cigarette Smoking , Animals , Cotinine , Nicotine , Rats , Nicotiana
6.
Front Psychiatry ; 12: 701408, 2021.
Article En | MEDLINE | ID: mdl-34421682

Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.

7.
Sci Rep ; 11(1): 14857, 2021 07 21.
Article En | MEDLINE | ID: mdl-34290279

The immune system plays a role in the maintenance of healthy neurocognitive function. Different patterns of immune response triggered by distinct stimuli may affect nervous functions through regulatory or deregulatory signals, depending on the properties of the exogenous immunogens. Here, we investigate the effect of immune stimulation on cognitive-behavioural parameters in healthy mice and its impact on cognitive sequelae resulting from non-severe experimental malaria. We show that immune modulation induced by a specific combination of immune stimuli that induce a type 2 immune response can enhance long-term recognition memory in healthy adult mice subjected to novel object recognition task (NORT) and reverse a lack of recognition ability in NORT and anxiety-like behaviour in a light/dark task that result from a single episode of mild Plasmodium berghei ANKA malaria. Our findings suggest a potential use of immunogens for boosting and recovering recognition memory that may be impaired by chronic and infectious diseases and by the effects of ageing.


Cognitive Dysfunction/immunology , Cognitive Dysfunction/therapy , Immune System/immunology , Immune System/physiology , Immunization , Malaria/complications , Memory/physiology , Recognition, Psychology/physiology , Animals , Anxiety , Cognitive Dysfunction/etiology , Female , Mice, Inbred C57BL , Plasmodium berghei
8.
Neurochem Int ; 148: 105111, 2021 09.
Article En | MEDLINE | ID: mdl-34171414

Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.


Receptors, Purinergic , Signal Transduction , Social Isolation , Adenosine Diphosphate/cerebrospinal fluid , Animals , Behavior, Animal , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/pharmacology , Male , Nucleotidases/metabolism , Rats , Rats, Wistar , Receptor, Adenosine A2A/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Reflex, Startle , Schizophrenic Psychology , Social Behavior , Social Isolation/psychology , Weaning
9.
Article En | MEDLINE | ID: mdl-33198929

Methylmercury (MeHg) is known to be a chemical that poses a risk to public health. Exposure to MeHg and vitamin A (VitA) occurs through the ingestion of fish, present in the diet of most pregnant women. The absorption of these elements generates oxidative stress and can generate adaptations for future stressful events. Here, we assessed how exposure to VitA and/or MeHg during the fetal and breastfeeding period modulates the toxicity of MeHg reexposure in adulthood. We focus on redox systems and repairing DNA damage. Male rats (n = 50), were divided into 5 groups. Control received mineral oil; The VitA group received VitA during pregnancy, during breastfeeding and was exposed to MeHg in adulthood; VitA + MeHg received VitA and MeHg during pregnancy and breastfeeding and was exposed to MeHg in adulthood. The single exposure group (SE) was exposed to MeHg only in adulthood; and the MeHg group was pre-exposed to MeHg during pregnancy and breastfeeding and re-exposed to MeHg in adulthood. After treating the animals, we evaluated the redox status and the level of DNA damage in all rats. The results revealed that MeHg significantly decreased the activity of glutathione peroxidase (GPx) and sulfhydryl levels and increased the activity of superoxide dismutase (SOD), glutathione transferase, glutathione and carbonyl in all exposed groups. These results suggest that the second exposure to MeHg directly altered the effects of oxidation and that there were no specific effects associated with exposure during the fetal and breastfeeding periods. In addition, our findings indicate that MDA levels increased in MeHg and SE levels and no differences in MDA levels were observed between the VitA and MeHg + VitA groups. We also observed that animals pretreated exclusively with VitA showed residual damage similar to the control's DNA, while the other groups showed statistically higher levels of damage. In conclusion, low doses of MeHg and VitA during fetal and breastfeeding periods were unable to condition an adaptive response to subsequent exposure to MeHg in adulthood in relation to the observed levels of oxidative damage assessed after exposure.


DNA Damage , Liver/drug effects , Methylmercury Compounds/administration & dosage , Prenatal Exposure Delayed Effects/metabolism , Vitamin A/administration & dosage , Animals , Breast Feeding , Female , Glutathione Peroxidase/metabolism , Humans , Liver/metabolism , Male , Malondialdehyde/metabolism , Methylmercury Compounds/toxicity , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/diagnosis , Rats, Wistar , Vitamins/administration & dosage
10.
Alcohol ; 88: 55-63, 2020 11.
Article En | MEDLINE | ID: mdl-32698052

Taurine is an amino acid usually added to energy drinks. In rodents, acute taurine administration decreases voluntary alcohol intake, and subchronic administration restores different behavioral features impaired by alcohol withdrawal. In the present study, we evaluated the effects of chronic taurine treatment on voluntary alcohol consumption and changes in behavioral parameters in rats. Adult male Wistar rats were divided into two groups and were allowed to choose from two bottles containing 20% alcohol or 0.08% saccharin (vehicle solution), or two bottles containing vehicle, 24 h per day, for 5 weeks. After 3 weeks, rats received 100 mg/kg taurine (TAU) or saline (SAL) intraperitoneally once a day for 2 weeks, and daily alcohol consumption was monitored. On days 22 and 33, rats were tested in the open-field, and on day 34, they were exposed to the light/dark task (LDT). Our results show for the first time that chronic taurine treatment enhanced voluntary alcohol intake and preference in rats, and that these changes were accompanied by an anxiolytic-like phenotype in alcohol-treated rats, possibly due to its synergistic effect with alcohol on the dopaminergic and GABAergic systems.


Alcohol Drinking , Anti-Anxiety Agents , Taurine/pharmacology , Animals , Anti-Anxiety Agents/pharmacology , Ethanol , Male , Rats , Rats, Wistar
11.
Sci Rep ; 10(1): 8429, 2020 05 21.
Article En | MEDLINE | ID: mdl-32439951

The treatment of major depressive disorder (MDD) is still a challenge. In the search for novel antidepressants, glutamatergic neuromodulators have been investigated as possible fast-acting antidepressants. Innovative studies suggest that the purine cycle and/or the purinergic signaling can be dysregulated in MDD, and the endogenous nucleoside guanosine has gained attention due to its extracellular effects. This study aimed to verify if guanosine produces fast-onset effects in the well-validated, reliable and sensitive olfactory bulbectomy (OBX) model of depression. The involvement of the mTOR pathway, a key target for the fast-onset effect of ketamine, was also investigated. Results show that a single i.p. injection of guanosine, or ketamine, completely reversed the OBX-induced anhedonic-like behavior 24 or 48 h post treatment, as well as the short-term recognition memory impairment 48 h post treatment. The antidepressant-like effects of guanosine and ketamine were completely abolished by rapamycin. This study shows, for the first time, that guanosine, in a way similar to ketamine, is able to elicit a fast antidepressant response in the OBX model in mice. The results support the notion that guanosine represents a new road for therapeutic improvement in MDD.


Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Excitatory Amino Acid Agents/pharmacology , Guanosine/pharmacology , Anhedonia/drug effects , Animals , Antidepressive Agents/adverse effects , Behavior, Animal/drug effects , Disease Models, Animal , Guanosine/adverse effects , Ketamine/pharmacology , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL , Olfactory Bulb/surgery , TOR Serine-Threonine Kinases/metabolism
12.
Nutrition ; 75-76: 110770, 2020.
Article En | MEDLINE | ID: mdl-32276242

OBJECTIVE: Exposure to artificial sweeteners, such as aspartame, during childhood and adolescence has been increasing in recent years. However, the safe use of aspartame has been questioned owing to its potentially harmful effects on the developing brain. The aim of this study was to test whether the chronic consumption of aspartame during adolescence leads to a depressive-like phenotype and to investigate the possible mechanisms underlying these behavioral changes. METHODS: Adolescent male and female rats were given unlimited access to either water, solutions of aspartame, or sucrose in their home cages from postnatal day 21 to 55. RESULTS: Forced swim test revealed that both chronic aspartame and sucrose intake induced depressive-like behaviord, which was more pronounced in males. Additionally, repeated aspartame intake was associated with increased cerebrospinal fluid (CSF) aspartate levels, decreased hippocampal neurogenesis, and reduced activation of the hippocampal leptin signaling pathways in males. In females, we observed a main effect of aspartame: reducing PI3K/AKT one of the brain-derived neurotrophic factor pathways; aspartame also increased CSF aspartate levels and decreased the immunocontent of the GluN2A subunit of the N-methyl-d-aspartic acid receptor. CONCLUSION: The findings revealed that repeated aspartame intake during adolescence is associated with a depressive-like phenotype and changes in brain plasticity. Interestingly, males appear to be more vulnerable to the adverse neurometabolic effects of aspartame than females, demonstrating a sexually dimorphic response. The present results highlighted the importance of understanding the effects caused by the constant use of this artificial sweetener in sensitive periods of development and contribute to regulation of its safe use.


Aspartame , Phosphatidylinositol 3-Kinases , Sweetening Agents , Animals , Aspartame/toxicity , Female , Male , Phenotype , Rats , Sucrose , Sweetening Agents/toxicity
13.
Chemosphere ; 244: 125400, 2020 Apr.
Article En | MEDLINE | ID: mdl-31809933

Methylmercury (MeHg) is an organic bioaccumulated mercury derivative that strongly affects the environment and represents a public health problem primarily to riparian communities in South America. Our objective was to investigate the hepatic and neurological effects of MeHg exposure during the phases foetal and breast-feeding and adult in Wistar rats. Wistar rats (n = 10) were divided into 3 groups. Control group received mineral oil; The simple exposure (SE) group was exposed only in adulthood (0.5 mg/kg/day); and double exposure (DE) was pre-exposed to MeHg 0.5 mg/kg/day during pregnancy and breastfeeding (±40 days) and re-exposed to MeHg for 45 days from day 100. After, we evaluated possible abnormalities. Behavioral and biochemical parameters in liver and occipital cortex (CO), markers of liver injury, redox and AKT/GSK3ß/mTOR signaling pathway. Our results showed that both groups treated with MeHg presented significant alterations, such as decreased locomotion and exploration and impaired visuospatial perception. The rats exposed to MeHg showed severe liver damage and increased hepatic glycogen concentration. The MeHg groups showed significant impairment in redox balance and oxidative damage to liver macromolecules and CO. MeHg upregulated the AKT/GSK3ß/mTOR pathway and the phosphorylated form of the Tau protein. In addition, we found a reduction in NeuN and GFAP immunocontent. These results represent the first approach to the hepatotoxic and neural effects of foetal and adult MeHg exposure.


Environmental Pollutants/toxicity , Methylmercury Compounds/toxicity , Nervous System/drug effects , Animals , Breast Feeding , Female , Fetus/metabolism , Humans , Liver/metabolism , Locomotion , Male , Methylmercury Compounds/metabolism , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar , Signal Transduction/drug effects , South America
14.
Article En | MEDLINE | ID: mdl-31707092

Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.


Caffeine/therapeutic use , Central Nervous System Stimulants/therapeutic use , Depression/prevention & control , Depression/psychology , Neurodegenerative Diseases/prevention & control , Psychomotor Agitation/prevention & control , Psychomotor Agitation/psychology , Animals , Behavior, Animal/drug effects , Brain/pathology , Gliosis/pathology , Male , Memory Disorders/prevention & control , Memory Disorders/psychology , Mice , Neurodegenerative Diseases/pathology , Olfactory Bulb , Receptor, Adenosine A1/drug effects , Receptor, Adenosine A2A/drug effects , Recognition, Psychology/drug effects , Synaptosomal-Associated Protein 25/metabolism
15.
Behav Brain Res ; 380: 112444, 2020 02 17.
Article En | MEDLINE | ID: mdl-31866463

Interactions on neurotransmitter systems in the reward pathways may explain the high frequency of combined use of alcohol and cigarettes in humans. In this study, we evaluated some behavioral and neurochemical changes promoted by chronic exposure to alcohol and cigarette smoke in rats. Adult rats were administered with 2 g/kg alcohol (v.o.) or/and inhaled the smoke from 6 cigarettes, twice/day, for 30 days. Behavioral tests were performed 3 h after the alcohol administration and 1 h after the last exposure to cigarette smoke in the morning. Cerebrospinal fluid was collected for glutamate determination and the hippocampus was dissected for GABAA and NMDA receptor subunits mRNA expression determination. Results showed that the combined use of alcohol and cigarette smoke (ALTB) in rats increased the locomotor activity and all interventions decreased anxiety-like behaviors. Despite being on a short-term withdrawal, the cigarette smoke exposure decreased the percentage of open arm entries in the elevated plus maze test, which was prevented by combined use with alcohol. Even though GABAA and glutamate receptor subunits expression did not change in the hippocampus, glutamate levels were significantly higher in the cerebrospinal fluid from ALTB rats. Therefore, we showed that the combined use of alcohol and cigarette maintained a psychostimulant effect after a short-term withdrawal that was associated with the elevated glutamatergic activity. The combined use also prevented anxiety-like signs in cigarette smoke exposure rats, decreasing an adverse effect caused by nicotine withdrawal. These results could explain, in part, the elevated frequency of combined use of these two drugs of abuse in humans.


Anxiety/drug therapy , Behavior, Animal/drug effects , Central Nervous System Depressants/pharmacology , Cigarette Smoking , Ethanol/pharmacology , Glutamic Acid/cerebrospinal fluid , Hippocampus/drug effects , Hippocampus/metabolism , Locomotion/drug effects , Receptors, GABA-A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Central Nervous System Depressants/administration & dosage , Drug Therapy, Combination , Ethanol/administration & dosage , Glutamic Acid/drug effects , Maze Learning , RNA, Messenger , Rats , Rats, Wistar , Receptors, GABA-A/drug effects , Receptors, N-Methyl-D-Aspartate/drug effects
16.
Neurochem Int ; 126: 27-35, 2019 06.
Article En | MEDLINE | ID: mdl-30849398

Carvacrol (CARV) presents valuable biological properties such as anti-inflammatory and antioxidant activities. However, pharmacological uses of CARV are largely limited due to disadvantages related to solubility, bioavailability, preparation and storage processes. The complexation of monoterpenes with ß-cyclodextrin (ß-CD) increases their stability, solubility and oral bioavailability. Here, the protective effect of oral treatment with CARV/ß-CD complex (25 µg/kg/day) against dopaminergic (DA) denervation induced by unilateral intranigral injection of 6-hydroxydopamine (6-OHDA - 10 µg per rat) was analyzed, in order to evaluate a putative application in the development of neuroprotective therapies for Parkinson's disease (PD). Pretreatment with CARV/ß-CD for 15 days prevented the loss of DA neurons induced by 6-OHDA in adult Wistar rats. This effect may occur through CARV anti-inflammatory and antioxidant properties, as the pretreatment with CARV/ß-CD inhibited the release of IL-1ß and TNF-α; besides, CARV prevented the increase of mitochondrial superoxide production induced by 6-OHDA in cultured SH-SY5Y cells. Importantly, hepatotoxicity or alterations in blood cell profile were not observed with oral administration of CARV/ß-CD. Therefore, this study showed a potential pharmacological application of CARV/ß-CD in PD using a non-invasive route of drug delivery, i.e., oral administration.


Cymenes/administration & dosage , Denervation/adverse effects , Dopaminergic Neurons/drug effects , Neuroprotective Agents/administration & dosage , Oxidopamine/toxicity , beta-Cyclodextrins/administration & dosage , Administration, Oral , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Drug Combinations , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar
17.
Behav Sci (Basel) ; 8(8)2018 Aug 15.
Article En | MEDLINE | ID: mdl-30111726

Aims: Autism spectrum disorder (ASD) refers to a group of heterogeneous brain-based neurodevelopmental disorders with different levels of symptom severity. Given the challenges, the clinical diagnosis of ASD is based on information gained from interviews with patients' parents. The heterogeneous pathogenesis of this disorder appears to be driven by genetic and environmental interactions, which also plays a vital role in predisposing individuals to ASD with different commitment levels. In recent years, it has been proposed that epigenetic modifications directly contribute to the pathogenesis of several neurodevelopmental disorders, such as ASD. The microRNAs (miRNAs) comprises a species of short noncoding RNA that regulate gene expression post-transcriptionally and have an essential functional role in the brain, particularly in neuronal plasticity and neuronal development, and could be involved in ASD pathophysiology. The aim of this study is to evaluate the expression of blood miRNA in correlation with clinical findings in patients with ASD, and to find possible biomarkers for the disorder. Results: From a total of 26 miRNA studied, seven were significantly altered in ASD patients, when compared to the control group: miR34c-5p, miR92a-2-5p, miR-145-5p and miR199a-5p were up-regulated and miR27a-3p, miR19-b-1-5p and miR193a-5p were down-regulated in ASD patients. Discussion: The main targets of these miRNAs are involved in immunological developmental, immune response and protein synthesis at transcriptional and translational levels. The up-regulation of both miR-199a-5p and miR92a-2a and down-regulation of miR-193a and miR-27a was observed in AD patients, and may in turn affect the SIRT1, HDAC2, and PI3K/Akt-TSC:mTOR signaling pathways. Furthermore, MeCP2 is a target of miR-199a-5p, and is involved in Rett Syndrome (RTT), which possibly explains the autistic phenotype in male patients with this syndrome.

18.
Neurochem Res ; 43(7): 1476-1489, 2018 Jul.
Article En | MEDLINE | ID: mdl-29855847

Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28-35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.


Brain Ischemia/prevention & control , Cerebral Cortex/drug effects , Guanosine/administration & dosage , Neuroprotective Agents/administration & dosage , Sex Characteristics , Animals , Brain Ischemia/pathology , Cerebral Cortex/pathology , Female , Male , Maze Learning/drug effects , Maze Learning/physiology , Rats , Rats, Wistar , Recovery of Function/drug effects , Recovery of Function/physiology
19.
Parasit Vectors ; 11(1): 191, 2018 03 20.
Article En | MEDLINE | ID: mdl-29554958

BACKGROUND: Cerebral malaria, the main complication of Plasmodium falciparum infection in humans, is associated with persistent neurocognitive sequels both in human disease and the murine experimental model. In recent years, cognitive deficits related to uncomplicated (non-cerebral) malaria have also been reported in chronically exposed residents of endemic areas, but not in some murine experimental models of non-cerebral malaria. This study aimed at evaluating the influence of uncomplicated malaria on different behavioural paradigms associated with memory and anxiety-like parameters in a murine model that has the ability to develop cerebral malaria. METHODS: Plasmodium berghei ANKA-infected and non-infected C57BL/6 mice were used. Development of cerebral malaria was prevented by chloroquine treatment starting on the fourth day of infection. The control group (non-infected mice) were treated with PBS. The effect of uncomplicated malaria infection on locomotor habituation, short and long-term memory and anxious-like behaviour was evaluated 64 days after parasite clearance in assays including open field, object recognition, Y-maze and light/dark tasks. RESULTS: Plasmodium berghei ANKA-infected mice showed significant long-lasting disturbances reflected by a long-term memory-related behaviour on open field and object recognition tasks, accompanied by an anxious-like phenotype availed on open field and light-dark tasks. CONCLUSIONS: Long-term neurocognitive sequels may follow an uncomplicated malaria episode in an experimental model prone to develop cerebral malaria, even if the infection is treated before the appearance of clinical signs of cerebral impairment.


Anxiety , Malaria/complications , Memory , Time , Animals , Antimalarials/therapeutic use , Brain/parasitology , Cognition Disorders/etiology , Cognition Disorders/parasitology , Disease Models, Animal , Malaria/parasitology , Malaria, Cerebral , Mice , Mice, Inbred C57BL , Parasitemia/drug therapy , Plasmodium berghei/isolation & purification
20.
Eur J Nutr ; 57(5): 1913-1924, 2018 Aug.
Article En | MEDLINE | ID: mdl-28567576

PURPOSE: Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003-1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance. METHODS: Wistar rats were fed either a normolipidic or a hyperlipidic diet for 90 days; diets had the same ingredients except for fat compositions, concentrations, and calories. We used lard in the cis fatty acid (CFA) group and PHSO in the TFA group. The intervention groups were as follows: (1) low lard (LL), (2) high lard (HL), (3) low partially hydrogenated soybean oil (LPHSO), and (4) high partially hydrogenated soybean oil (HPHSO). Mitochondrial parameters, tumor necrosis factor alpha (TNF-α), 2'7'-dichlorofluorescein (DCFH) levels in brain tissue, and open field task were analyzed. RESULTS: A worse brain tissue response was associated with oxidative stress in cortex and hippocampus as well as impaired inflammatory and mitochondrial parameters at both PHSO concentrations and there were alterations in the behavioral performance. In many analyses, there were no significant differences between the LPHSO and HPHSO diets. CONCLUSIONS: Partially hydrogenated soybean oil impaired cortical mitochondrial parameters and altered inflammatory and oxidative stress responses, and the hyperlipidic treatment caused locomotor and exploratory effects, but no differences on weight gain in all treatments. These findings suggest that quality is more important than the quantity of fat consumed in terms of CFA and TFA diets.


Dietary Fats/pharmacology , Hippocampus/drug effects , Mitochondria/drug effects , Oxidative Stress/drug effects , Trans Fatty Acids/pharmacology , Animals , Diet , Dietary Fats/administration & dosage , Hippocampus/metabolism , Inflammation/blood , Male , Mitochondria/metabolism , Rats , Rats, Wistar , Soybean Oil , Trans Fatty Acids/administration & dosage
...